Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Curr Pharmacol Rep ; 9(3): 144-153, 2023.
Article in English | MEDLINE | ID: covidwho-2318459

ABSTRACT

The world recently witnessed the emergence of new epidemic outbreaks like COVID-19 and mpox. The 2022 outbreak of mpox amid COVID-19 presents an intricate situation and requires strategies to combat the status quo. Some of the challenges to controlling an epidemic include present knowledge of the disease, available treatment options, appropriate health infrastructures facilities, current scientific methods, operations concepts, availability of technical staff, financial funds, and lastly international policies to control an epidemic state. These insufficiencies often hinder the control of disease spread and jeopardize the health of countless people. Also, disease outbreaks often put a huge burden on the developing economies. These countries are the worst affected and are immensely dependent on assistance provided from the larger economies to control such outbreaks. The first case of mpox was reported in the 1970s and several outbreaks were detected thereafter in the endemic areas eventually leading to the recent outbreak. Approximately, more than 80,000 individuals were infected, and 110 countries were affected by this outbreak. Yet, no definite vaccines and drugs are available to date. The lack of human clinical trials affected thousands of individuals in availing definite disease management. This paper focuses on the epidemiology of mpox, scientific concepts, and treatment options including future treatment modalities for mpox.

2.
J Infect Public Health ; 16(1): 4-14, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2240251

ABSTRACT

Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.

4.
Clin Microbiol Rev ; 35(3): e0001422, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1896040

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.


Subject(s)
Antibodies, Monoclonal , Antiviral Agents , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization/drug effects
7.
Front Cell Infect Microbiol ; 12: 905817, 2022.
Article in English | MEDLINE | ID: covidwho-1855323
9.
Front Cell Infect Microbiol ; 11: 763687, 2021.
Article in English | MEDLINE | ID: covidwho-1598820

ABSTRACT

Within almost the last 2 years, the world has been shaken by the coronavirus disease 2019 (COVID-19) pandemic, which has affected the lives of all people. With nearly 4.92 million deaths by October 19, 2021, and serious health damages in millions of people, COVID-19 has been the most serious global challenge after the Second World War. Besides lost lives and long-term health problems, devastating impact on economics, education, and culture will probably leave a lasting impression on the future. Therefore, the actual extent of losses will become obvious only after years. Moreover, despite the availability of different vaccines and vaccination programs, it is still impossible to forecast what the next steps of the virus are or how near we are to the end of the pandemic. In this article, the route of molecular evolution of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thoroughly compiled, highlighting the changes that the virus has undergone during the last 2 years and discussing the approaches that the medical community has undertaken in the fight against virus-induced damages.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Vaccines , Evolution, Molecular , Humans , Pandemics , SARS-CoV-2
10.
Front Nutr ; 8: 646988, 2021.
Article in English | MEDLINE | ID: covidwho-1311380

ABSTRACT

Curdlan is an exopolysaccharide, which is composed of glucose linked with ß-(1,3)-glycosidic bond and is produced by bacteria, such as Alcaligenes spp., Agrobacterium spp., Paenibacillus spp., Rhizobium spp., Saccharomyces cerevisiae, Candida spp., and fungal sources like Aureobasidium pullulan, Poria cocos, etc. Curdlan has been utilized in the food and pharmaceutical industries for its prebiotic, viscosifying, and water-holding properties for decades. Recently, the usefulness of curdlan has been further explored by the pharmaceutical industry for its potential therapeutic applications. Curdlan has exhibited immunoregulatory and antitumor activity in preclinical settings. It was observed that curdlan can prevent the proliferation of malarial merozoites in vivo; therefore, it may be considered as a promising therapy for the treatment of end-stage malaria. In addition, curdlan has demonstrated potent antiviral effects against human immunodeficiency virus (HIV) and Aedes aegypti virus. It has been suggested that the virucidal properties of curdlans should be extended further for other deadly viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2/COVID-19). The prebiotic property of curdlan would confer beneficial effects on the host by promoting the growth of healthy microbiota in the gut and consequently help to reduce gastrointestinal disorders. Therefore, curdlan can be employed in the manufacture of prebiotics for the management of various gastrointestinal dysbiosis problems. Studies on the mechanism of action of curdlan-induced suppression in microbial and tumor cells at the cellular and molecular levels would not only enhance our understanding regarding the therapeutic effectiveness of curdlan but also help in the discovery of new drugs and dietary supplements. The primary focus of this review is to highlight the therapeutic interventions of curdlan as an anticancer, anti-malaria, antiviral, and antibacterial agent in humans. In addition, our review provides the latest information about the chemistry and biosynthesis of curdlan and its applications for making novel dairy products, functional foods, and nutraceuticals and also details about the recent patents of curdlan and its derivatives.

11.
Curr Pharmacol Rep ; 7(2): 49-54, 2021.
Article in English | MEDLINE | ID: covidwho-1095761

ABSTRACT

PURPOSE OF REVIEW: The widespread respiratory disease of virus known as severe acute respiratory syndrome-coronavirus 2019 (SAR-CoV-2) had infected more than 200 countries and caused pandemic and havoc in the world. RECENT FINDINGS: The genome of the virus was sequenced rapidly to study its mechanism, epidemiology, drugs, and vaccines. Many drugs and vaccines are being studied by researchers to treat and prevent the SARS-CoV-2. Favipiravir and dexamethasone are repurposed drugs which showed therapeutic potential and pharmaceutical efficacy against SARS-CoV-2. SUMMARY: The review describes the path of favipiravir and dexamethasone from chemistry to mechanisms of action to combat SARS-CoV-2. In addition, the potential side effects are also summarized to study their potential to control corona virus 2019.

12.
3 Biotech ; 11(2): 110, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1060874

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has been established now to be a deadly disease afflicting the whole world with worst consequences on healthcare, economy and day-to-day life activities. Being a communicable disease, which is highly pathogenic in humans, causing cough, throat infection, breathing problems, high fever, muscle pain, and may lead to death in some cases especially those having other comorbid conditions such as heart or kidney problems, and diabetes. Finding an appropriate drug and vaccine candidate against coronavirus disease (COVID-19) remains an ultimate and immediate goal for the global scientific community. Based on previous studies in the literature on SARS-CoV infection, there are a number of drugs that may inhibit the replication of SARS-CoV-2 and its infection. Such drugs comprise of inhibitors of Angiotensin-Converting Enzyme 2 (ACE2), transmembrane Serine Protease 2 (TMPRSS2), nonstructural protein 3C-like protease, nonstructural RNA-dependent RNA polymerase (RdRp) and many more. The antiviral drugs such as chloroquine and hydroxychloroquine, lopinavir and ritonavir as inhibitors for HIV protease, nucleotide analogue remdesivir, and broad-spectrum antiviral drugs are available to treat the SARS-CoV-2-infected patients. Therefore, this review article is planned to gain insight into the mechanism for blocking the entry of SARS-CoV-2, its validation, other inhibition mechanisms, and development of therapeutic drugs and vaccines against SARS-CoV-2.

13.
Curr Pharmacol Rep ; 6(6): 354-363, 2020.
Article in English | MEDLINE | ID: covidwho-887003

ABSTRACT

Purpose of Review: In the last month of 2019, i.e., December, COVID-19 hit Wuhan city in China. Since then, it has infected more than 210 countries and nearly about 33.4 million people with one million deaths globally. It is a viral disease with flu-like symptoms; hence, prevention and management is the best option to be adopted for its cure. Recent Findings: Many healthcare systems, scientists, and researchers are fighting for the cure of this pandemic. Ayurvedic and allopathic treatments have been studied extensively and approached for the cure of COVID-19. In addition to ayurvedic treatments, the Ministry of Ayush, India, has also recommended many remedies to boost up immunity. Allopathic studies involved several antiviral drugs which were used in different combinations for the treatment of COVID-19. Summary: Comparative analysis of Ayurveda and allopathic treatment strategies were carried out in the present study. Depending upon the patient's conditions and symptoms, Ayurveda is useful for the treatment of COVID-19. Allopathic treatments inhibit viral infection by targeting majorly endocytosis, and angiotensin-converting enzyme (Ace) receptor signaling. In this article, we summarize different ayurvedic and allopathic medicines and treatment strategies which have been used for the treatment of COVID-19, a global pandemic.

14.
Curr Pharmacol Rep ; 6(5): 212-227, 2020.
Article in English | MEDLINE | ID: covidwho-679788

ABSTRACT

PURPOSE OF REVIEW: In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger. RECENT FINDINGS: According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known. SUMMARY: In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL